Дано дифференциальное уравнение
,(11.1.41)
где
действительные числа.
В предыдущих параграфах был дан общий метод нахождения общего решения неоднородного дифференциального уравнения. В этом параграфе покажем нахождение частных решений линейного дифференциального уравнения второго порядка с постоянными коэффициентами
1.
,(11.1.42)
где
многочлен
ой степени,
постоянная.
Тогда возможны следующие случаи:
а) Число
не является корнем характеристического уравнения
.
В этом случае частное решение нужно искать в виде
, (11.1.43)
где
коэффициенты, подлежащие определению.
Подставляя
в уравнение (11.1.41) и сокращая все члены на множитель
, имеем
.(11.1.44)
Слева и справа от знака равенства стоит многочлен
й степени, приравнивая коэффициенты при одинаковых степенях
, получим систему
уравнений для определения неизвестных коэффициентов
.
б) Число
есть простой корень характеристического уравнения. В этом случае частное решение нужно искать в виде
.
Неизвестные коэффициенты
определяем так же как в пункте а.
в) Число
двукратный корень характеристического уравнения. Тогда частное решение
следует искать в виде
.
Неизвестные коэффициенты
определяем так же как в пункте а.
2. Правая часть уравнения (11.1.41) имеет вид
, где
постоянные.
а) Если число
не является корнем характеристического уравнения, то частное
следует искать в виде
, где
числа, подлежащие определению.
б) Если число
является корнем характеристического уравнения, то частное решение следует искать в виде
.
ПРИМЕР 11.1.28 Найти общее решение дифференциального уравнения
.
Решение.
Составляем характеристическое уравнение
, которое имеет корни
, поэтому общее решение соответствующего однородного уравнения имеет вид
.
Для этого случая
,
. Это число является корнем характеристического уравнения, поэтому частное решение
неоднородного находим в виде
. Подставляя
в дифференциальное уравнение и приравнивая коэффициенты при
и
, получаем систему уравнений для определения
и
:
, откуда
.
Тогда общее решение данного дифференциального уравнения имеет вид
.
Онлайн помощь по математике >
Лекции по высшей математике >
Примеры решения задач >