Дан степенной ряд
. Требуется определить его интервал сходимости. Для решения поставленной задачи поступаем следующим образом:
а) определяем радиус сходимости степенного ряда по формулам (12.1.43) или (12.1.44);
б) записываем интервал сходимости
;
в) проверим поведение ряда на концах интервала
. В ряд вместо
подставляем
или
, в результате чего получаем знакоположительные или знакочередующиеся числовые ряды, к которым применяем соответствующие признаки сходимости;
г) если при
числовые ряды сходятся, то данный степенной ряд сходится на отрезке
.
Если при
числовые ряды расходятся, то данный степенной ряд сходится на интервале
.
Если при
числовой ряд сходится, а при
расходится или, наоборот, при
расходится, а при
сходится, то данный степенной ряд сходится на полуинтервале
или
.
ПРИМЕР 12.1.15 Определить интервал сходимости ряда
.
Решение. Определим радиус сходимости по формуле (12.1.43), для чего запишем
и
.
и
, тогда
.
Так как
, то интервал сходимости будет иметь вид
.
Проверим поведение ряда на концах интервала. Подставим в данный ряд вместо
число:
, получим числовой ряд
. Полученный числовой знакопостоянный ряд является гармоническим рядом и расходится. При
получаем числовой знакочередующийся ряд
, который сходится, так как для него выполняются условия теоремы Лейбница, а именно: члены ряда убывают по абсолютной величине, то есть
и
. Следовательно, данный степенной ряд сходится на полуинтервале
.
Отметим, что если
, то интервал сходимости вырождается в точку, если
, то интервал сходимости
.
ПРИМЕР 12.1.16 Определить интервал сходимости ряда
.
Решение. Вычислим радиус сходимости
.
Таким образом, интервал сходимости этого ряда состоит из всех вещественных чисел
.
ПРИМЕР 12.1.17 Определить интервал сходимости ряда
.
Решение. Вычислим радиус сходимости
. Итак,
интервал сходимости вырождается в точку, то есть данный ряд сходится лишь при
.
Онлайн помощь по математике >
Лекции по высшей математике >
Примеры решения задач >