ОПРЕДЕЛЕНИЕ 11.1.19 Линейной системой дифференциальных уравнений с постоянными коэффициентами второго порядка называется система вида
(11.1.52)
где постоянные, непрерывные функции на интервале .
ОПРЕДЕЛЕНИЕ 11.1.20 Линейная система называется однородной, если на интервале , то есть система имеет вид
(11.1.53)
Решения системы будем искать в виде
, (1.1.54)
где постоянные.
Подставляя в систему (11.1.53) функции , сокращая на и перенося все члены в одну часть равенства, получим
(11.1.55)
Для того, чтобы эта система линейных однородных уравнений с двумя неизвестными имела ненулевое решение, необходимо и достаточно, чтобы главный определитель системы (11.1.55) был равен нулю:
(11.1.56)
Уравнение (11.1.56) называется характеристическим для системы (11.1.53), его корни называются корнями характеристического уравнения.
1. Корни характеристического уравнения действительные и различные. Обозначим через корни характеристического уравнения. Для каждого корня напишем систему (11.1.55) и определим коэффициенты .
Можно показать, что один из них произвольный, так как система (11.1.55) однородная, его можно считать равным единице. Таким образом, получаем:
для корня решение системы (11.1.53) ;
для корня решение системы (11.1.53) .
Тогда можно показать, что функции являются общим решением системы (11.1.53), где произвольные постоянные.
ПРИМЕР 11.1.31 Найти общее решение системы
Решение.
Составляем характеристическое уравнение или , которое имеет корни .
Для определения чисел подставляем в систему (11.1.55) значение , получаем Решая ее, находим , тогда , .
Подставляя в систему значение , решая полученную систему, имеем и , .
Следовательно, функции являются общим решением системы.
2. Корни характеристического уравнения комплексные. Эти корни обозначим через . Этим корням будут соответствовать решения ;
.
Коэффициенты определяются из системы уравнений (11.1.55).
Можно показать, что действительные и мнимые части комплексного решения также являются решениями. Таким образом, получаем частные решения:
,
где , действительные числа, определяемые через .
На основе этих частных решений можно написать общее решение.
ПРИМЕР 11.1.32 Найти общее решение системы дифференциальных уравнений
Решение.
Характеристическое уравнение или имеет корни . Решения этой системы имеют вид: , подставляя в систему (11.1.55), находим . Следовательно, . Действительная и мнимая части этих функций также являются решениями системы, а их линейная комбинация с произвольными постоянными является общим решением системы:
Онлайн помощь по математике >
Лекции по высшей математике >
Примеры решения задач >