Рассмотрим разложение в ряд Маклорена функции
Так как .
Для любого фиксированного при всех и всех n=0,1,2,… или .
Таким образом, условие теоремы (1) для выполнено, поэтому функция раскладывается в ряд Тейлора на любом конечном интервале, а значит, и на всей действительной оси. Если , то ; получим разложение функции в ряд Маклорена, который имеет вид
. (12.1.56)
Полученный ряд можно использовать для разложения в ряд Маклорена сложных показательных функций.
ПРИМЕР 12.1.19 Разложить функцию в ряд Маклорена. Для решения поставленной задачи воспользуемся выражением (12.1.56), заменив на :
. (12.1.57)
Подставим ; получим искомый ряд
.
который сходится абсолютно при любых .
Онлайн помощь по математике >
Лекции по высшей математике >
Примеры решения задач >