Система двух случайных величин. Способы задания.

Помощь по математике Примеры решения задач высшей математики Система двух случайных величин. Способы задания.
Получить решение

Двумерной называют случайную величину (X,Y), возможные значения которой есть пары чисел (x,y). Составляющие X и Y, рассматриваемые одновременно, образуют систему двух случайных величин.

Законом распределения дискретной двумерной случайной величины называют перечень возможных значений этой величины, то есть пар чисел и их вероятностей . Обычно закон распределения задают в виде таблицы, называемой матрицей распределения.

Y\X

Сумма вероятностей, помещенных во всех клетках таблицы, равна единице.

Из данной таблицы закон распределения составляющей СВ X.

где , .

Аналогично можно найти закон распределения составляющей СВ Y.

Двумерную случайную величину (X,Y) (безразлично, дискретную или непрерывную) можно задать с помощью функции распределения F(x,y), которая определяет вероятность того, что X примет значение, меньшее x, Y — меньшее y.

.

Свойства функции распределения:

1);

2) ;

3) , где функция распределения составляющей X;

, где функция распределения составляющей Y.

При помощи функции распределения может быть найдена вероятность

.

Непрерывную двумерную величину можно также задать, пользуясь плотностью распределения. Плотностью совместного распределения вероятностей f(x,y) двумерной непрерывной случайной величины (X,Y)
называют вторую смешанную частную производную от функции распределения:.

Свойства плотности распределения:

1) ;

2) .

Плотности распределения

составляющей X — ;

составляющей Y — .

Вероятность попадания случайной точки (X,Y) в область D определяется по формуле

.

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

ПРИМЕР 13.2.49. Два стрелка, независимо друг от друга, делают по одному выстрелу каждый. Случайная величина X — число попаданий первого стрелка, Y — число попаданий второго стрелка. Вероятность попадания при выстреле для первого стрелка 0,7; для второго стрелка — 0,4. Построить матрицу распределения системы случайных величин (X,Y) и законы распределения составляющих X и Y. Найти функцию распределения F(x,y).

Решение. Занесем возможные значения случайных величин X и Y в таблицу

X\Y 0 1
0
1

,

,

,

.

Итак,

X\Y 0 1
0 0,18 0,12
1 0,42 0,28

Напишем закон распределения составляющей

Y 0 1
P

,

.

Тогда

Y 0 1
P 0,6 0,4

Аналогично находится закон распределения составляющей x (складываются вероятности по столбцам).

x 0 1
P 0,3 0,7

Значения функции распределения F(x,y) находим на основании матрицы распределения

X\Y
0 0 0
0 0,18 0,18+0,12
0 0,18+0,42 0,18+0,12+0,42+0,28

Окончательно,

X\Y
0 0 0
0 0,18 0,3
0 0,6 1

ПРИМЕР 13.2.50. Задана двумерная плотность вероятности системы (X,Y) двух случайных величин. Найти постоянную C и плотности распределения составляющих системы.

Решение. Воспользуемся свойством .

Тогда, .

Найдем плотность распределения составляющей X

Аналогично можно найти плотность распределения составляющей Y.

ПРИМЕР 13.2.51. Найти вероятность попадания случайной точки (X,Y) в прямоугольник, ограниченный прямыми , , если известна функция распределения

.

Решение. Положив в формуле

,

получим

ПРИМЕР 13.2.52 В круге двумерная плотность вероятности ; вне круга . Найти вероятность попадания случайной точки (x,y) в круг радиуса с центром в начале координат.

Решение: Пусть область круг радиуса с центром в начале координат, тогда

.

Перейдем к полярным координатам:

.

Примеры и задачи для самостоятельного решения

Решить задачи, используя формулы расчета вероятности для системы двух случайных величин

3.2.11.1. Два игрока, независимо друг от друга, по два раза выбрасывают игральный кубик. Случайная величина X — число выпадений «шестерки» у первого игрока; Y — число выпадений «шестерки» у второго игрока. Построить матрицу распределения системы случайных величин (X,Y) и законы распределения составляющих. Найти функцию распределения F(x,y).

Отв.:

3.2.11.2. Найти вероятность того, что составляющая X двумерной случайной величины примет значение и при этом составляющая Y примет значение , если известна функция распределения системы .

Отв.:

3.2.11.3. Найти вероятность попадания случайной точки (X,Y) в прямоугольник, ограниченный прямыми , если известна функция распределения .

Отв.:

3.2.11.4. Найти плотность распределения системы двух случайных величин по известной функции распределения
.

Отв.:

3.2.11.5. Внутри прямоугольника, ограниченного прямыми , плотность распределения системы двух случайных величин ; вне прямоугольника . Найти: а) величину C; б) функцию распределения системы F(x,y).

Отв.:

3.2.11.6. Задана двумерная плотность вероятности системы случайных величин (X,Y). Найти постоянную C.

Указание: Перейти к полярным координатам.

Отв.:

3.2.11.7. В первом квадранте задана функция распределения системы двух случайных величин: . Найти: а)двумерную плотность распределения системы; б)вероятность попадания случайной точки (X,Y) в треугольник с вершинами .

Отв.:

3.2.11.8. Непрерывная двумерная случайная величина (X,Y) распределена равномерно внутри прямоугольника R, ограниченного абсциссами и ординатами . Найти: а)двумерную плотность вероятности системы; б)плотности распределения составляющих. Определить, зависимы или независимы случайные величины X и Y.

Отв.:

.

X и Y независимы,т.к. .

3.2.11.9. Точка (X,Y), изображающая объект на круглом экране радиолокатора, распределена с постоянной плотностью в пределах круга K радиуса r с центром в начале координат. Записать выражение совместной плотности f(x,y). Найти плотности отдельных величин, входящих в систему . Найти вероятность того, что расстояние от точки (X,Y) до центра экрана будет меньше .

Отв.:

Онлайн помощь по математике >
Лекции по высшей математике >
Примеры решения задач >

Заказать решение по теме

Сохранить или поделиться
Вы находитесь здесь:
Помощь по математике Примеры решения задач высшей математики Система двух случайных величин. Способы задания.

У нас можно заказать решение задач
и онлайн помощь на экзаменах

Математика - решение задач и помощь онлайн 24/7