Пусть даны два вектора и . В векторной алгебре рассматриваются два вида умножения векторов: скалярное, результатом которого является число, и векторное, результатом которого является вектор.
ОПРЕДЕЛЕНИЕ 1.34
Скалярным произведением векторов и называется число, равное произведению модулей перемножаемых векторов на косинус угла между ними (рис.1.1.18). Скалярное произведение обозначается символом . Итак,
. | (1.55) |
Рисунок 1.1.18
Так как
то
(1.56) |
Из (1.56) следует, что скалярное произведение векторов и равно модулю одного из векторов, умноженному на проекцию другого на направление первого вектора.
Свойства скалярного произведения векторов:
- , если или хотя бы один из векторов есть нулевой вектор (справедливо и обратное утверждение);
- для
Справедливость первых четырех свойств непосредственно следует из определения скалярного произведения. Докажем справедливость распределительного свойства 5. Согласно формуле (56) и теореме 13.2 о проекции имеем
Пусть векторы и заданы своими координатами:
Найдем скалярное произведение . Вычислим предварительно скалярные произведения единичных векторов.
Имеем Векторы взаимно перпендикулярны. Тогда, согласно свойству 2, их произведения друг на друга равны нулю.
Используя распределительный закон скалярного произведения, получим
Итак, если векторы и заданы своими координатами, то
. | (1.57) |
Следствие 1.
Если то или
. | (1.58) |
Условие (1.58) называется условием перпендикулярности двух векторов,
Следствие 2.
Так как ,то
(1.59) |
ПРИМЕР 1.1.22
Вычислить работу по перемещению материальной точки вдоль отрезка, из точки в точку под действием постоянной по величине и направлению силы
Решение Из курса физики известно, что работа , совершаемая при указанных в примере условиях, находится по формуле . Так как , то
Ответ: 5.
ПРИМЕР 1.1.23
Даны вершины треугольника и . Определить внутренний угол треугольника при вершине (рис. 1.1.19)
Рисунок 1.1.19
Решение Построим векторы и . Имеем
. Тогда
Ответ:
Из приведенных примеров следует, что скалярное произведение векторов широко применяется в геометрии при поиске величин углов, в физике — при определении работы.